Normal Linear Regression Models with Recursive Graphical Markov Structure*

نویسندگان

  • Steen A. Andersson
  • Michael D. Perlman
چکیده

A multivariate normal statistical model defined by the Markov properties determined by an acyclic digraph admits a recursive factorization of its likelihood function (LF) into the product of conditional LFs, each factor having the form of a classical multivariate linear regression model (≡ MANOVA model). Here these models are extended in a natural way to normal linear regression models whose LFs continue to admit such recursive factorizations, from which maximum likelihood estimators and likelihood ratio (LR) test statistics can be derived by classical linear methods. The central distribution of the LR test statistic for testing one such multivariate normal linear regression model against another is derived, and the relation of these regression models to block-recursive normal linear systems is established. It is shown how a collection of nonnested dependent normal linear regression models (≡ seemingly unrelated regressions) can be combined into a single multivariate normal linear regression model by imposing a parsimonious set of graphical Markov (≡ conditional independence) restrictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Likelihood Inference for Recursive Linear Models with Correlated Errors

In recursive linear models, the multivariate normal joint distribution of all variables exhibits a dependence structure induced by recursive systems of linear structural equations. Such models appear in particular in seemingly unrelated regressions, structural equation modelling, simultaneous equation systems, and in Gaussian graphical modelling. We show that recursive linear models that are ‘b...

متن کامل

Directed cyclic graphs, conditional independence, and non-recursive linear structural equation models

Recursive linear structural equation models can be represented by directed acyclic graphs. When represented in this way, they satisfy the Markov Condition. Hence it is possible to use the graphical d-separation to determine what conditional independence relations are entailed by a given linear structural equation model. I prove in this paper that it is also possible to use the graphical d-separ...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Parameter Priors for Directed Acyclic Graphical

We develop simple methods for constructing parameter priors for model choice among Directed Acyclic Graphical (DAG) models. In particular, we introduce several assumptions that permit the construction of parameter priors for a large number of DAG models from a small set of assessments. We then present a method for directly computing the marginal likelihood of every DAG model given a random samp...

متن کامل

Parameter Priors for Directed Acyclic Graphical Models and the Characteriration of Several Probability Distributions

We develop simple methods for constructing parameter priors for model choice among Directed Acyclic Graphical (DAG) models. In particular, we introduce several assumptions that permit the construction of parameter priors for a large number of DAG models from a small set of assessments. We then present a method for directly computing the marginal likelihood of every DAG model given a random samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996